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• Agents may need to handle uncertainty, whether due to partial observability, 

nondeterminism, or a combination of the two. An agent may never know for 

certain what state it’s in or where it will end up after a sequence of actions. 

• An example of uncertain reasoning: diagnosing a dental patient’s toothache. 

Let us try to write rules for dental diagnosis using propositional logic, so that 

we can see how the logical approach breaks down. 

Acting Under Uncertainty
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• Consider the following simple rule:

• The problem is that this rule is wrong. Not all patients with toothaches have 

cavities; some of them have gum disease, an abscess, or one of several other 

problems: 

• Unfortunately, in order to make the rule true, we have to add an almost 

unlimited list of possible problems. 

Acting Under Uncertainty
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• We could try turning the rule into a causal rule:

• But this rule is not right either; not all cavities cause pain. The only way to fix 

the rule is to make it logically exhaustive: to augment the left-hand side with 

all the qualifications required for a cavity to cause a toothache. 

Acting Under Uncertainty
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• Trying to use logic to cope with a domain like medical diagnosis thus fails for 

three main reasons:

• Laziness: It is too much work to list the complete set of antecedents (前項) 

or consequents (後項).

• Theoretical ignorance: Medical science has no complete theory for the 

domain.

• Practical ignorance: Even if we know all the rules, we might be uncertain 

about a particular patient because not all the necessary tests have been or 

can be run.

Acting Under Uncertainty
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• Our main tool for dealing with degrees of belief is probability 

theory. 

• Probability provides a way of summarizing the uncertainty that 

comes from our laziness and ignorance, thereby solving the 

qualification problem.

• This belief could be derived from statistical data—80% of the 

toothache patients seen so far have had cavities—or from some 

general dental knowledge, or from a combination of evidence.

Acting Under Uncertainty
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• Probability statements are made with respect to a knowledge state, not with 

respect to the real world. We say “The probability that the patient has a cavity, 

given that she has a toothache, is 0.8.” 

• If we later learn that the patient has a history of gum disease, we can make a 

different statement: “The probability that the patient has a cavity, given that 

she has a toothache and a history of gum disease, is 0.4.” 

• If we gather further conclusive evidence against a cavity, we can say “The 

probability that the patient has a cavity, given all we now know, is almost 0.” 

Note that these statements do not contradict each other; each is a separate 

assertion about a different knowledge state.

Acting Under Uncertainty
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• An agent must first have preferences between the different possible outcomes

of the various plans. 

• We use utility theory to represent and reason with preferences. (The term 

utility is used here in the sense of “the quality of being useful”.) 

• Utility theory says that every state has a degree of usefulness, or utility, to an 

agent and that the agent will prefer states with higher utility.

Uncertainty and rational decisions
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• Preferences, as expressed by utilities, are combined with probabilities in the 

general theory of rational decisions called decision theory:

• The fundamental idea of decision theory is that an agent is rational if and only 

if it chooses the action that yields the highest expected utility, averaged over 

all the possible outcomes of the action. This is called the principle of 

maximum expected utility (MEU). 

Uncertainty and rational decisions
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• Probabilistic assertions (主張) talk about how probable the various worlds are. 

• In probability theory, the set of all possible worlds is called the sample space. 

The possible worlds are mutually exclusive and exhaustive. 

• For example, if we are about to roll two (distinguishable) dice, there are 36 

possible worlds to consider: (1,1), (1,2), ..., (6,6). The Greek letter Ω 

(uppercase omega) is used to refer to the sample space, and ω (lowercase 

omega) refers to elements of the space, that is, particular possible worlds.

What probabilities are about
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• A fully specified probability model associates a numerical probability P(ω) 

with each possible world. The basic axioms of probability theory: 

• For example, if we assume that each die is fair and the rolls don’t interfere 

with each other, then each of the possible worlds (1,1), (1,2), ..., (6,6) has 

probability 1/36. 

What probabilities are about
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• Probabilistic assertions and queries are not usually about particular possible 

worlds, but about sets of them. For example, we might be interested in the 

cases where the two dice add up to 11, the cases where doubles are rolled, and 

so on. In probability theory, these sets are called events. In AI, the sets are 

always described by propositions (命題) in a formal language. 

• For each proposition, the corresponding set contains just those possible worlds 

in which the proposition holds. The probability associated with a proposition is 

defined to be the sum of the probabilities of the worlds in which it holds:

What probabilities are about
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• For example, when rolling fair dice, we have 

P(Total = 11) = P((5, 6)) + P((6, 5)) = 1/36 + 1/36 = 1/18. 

• Probabilities such as P(Total = 11) and P(doubles) are called unconditional or 

prior probabilities (and sometimes just “priors” for short); they refer to 

degrees of belief in propositions in the absence of any other information. 

What probabilities are about

13



• Most of the time, however, we have some information, usually called evidence, 

that has already been revealed. For example, the first die may already be 

showing a 5. 

• In that case, we are interested not in the unconditional probability of rolling 

doubles, but the conditional or posterior probability (or just “posterior” for 

short) of rolling doubles given that the first die is a 5. This probability is 

written P(doubles|Die1=5), where the “ | ” is pronounced “given.” 

What probabilities are about
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• Similarly, if I am going to the dentist for a regular checkup, the probability 

P(cavity) = 0.2 might be of interest; but if I go to the dentist because I have a 

toothache, it’s P(cavity | toothache) = 0.6 that matters. 

• It is important to understand that P(cavity)=0.2 is still valid after toothache is 

observed. When making decisions, an agent needs to condition on all the 

evidence it has observed. 

What probabilities are about
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• The definition of conditional probability, Equation (13.3), can be written in a 

different form called the product rule:

• The product rule is perhaps easier to remember: it comes from the fact that, for 

a and b to be true, we need b to be true, and we also need a to be true given b.

What probabilities are about
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• Variables in probability theory are called random variables and their names 

begin with an uppercase letter. In the dice example, Total and Die1 are random 

variables. Every random variable has a domain—the set of possible values it 

can take on. The domain of Total for two dice is the set {2,...,12} and the 

domain of Die1 is {1,...,6}. 

• A Boolean random variable has the domain {true, false}. For example, the 

proposition that doubles are rolled can be written as Doubles = true. By 

convention, propositions of the form A=true are abbreviated simply as a, while 

A=false is abbreviated as ¬a. 

Lang. of propositions in prob. assertions
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• Variables can have infinite domains—either discrete (like the integers) or 

continuous (like the reals). 

• Finally, we can combine these sorts of elementary propositions by using the 

connectives of propositional logic. For example, we can express “The 

probability that the patient has a cavity, given that she is a teenager with no 

toothache, is 0.1” as follows:

Lang. of propositions in prob. assertions
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• where the bold P indicates that the result is a vector of numbers. We say that 

the P statement defines a probability distribution for the random variable 

Weather. The P notation is also used for conditional distributions: P(X | Y) 

gives the values of P(X = xi | Y = yj) for each possible i, j pair.

Lang. of propositions in prob. assertions
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• For continuous variables, it is not possible to write out the entire distribution 

as a vector, because there are infinitely many values. Instead, we can define 

the probability that a random variable takes on some value x as a 

parameterized function of x. For example, the sentence

expresses the belief that the temperature at noon is distributed uniformly 

between 18 and 26 degrees Celsius. We call this a probability density 

function.

Lang. of propositions in prob. assertions
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• Probability density functions (sometimes called pdfs) differ in meaning from 

discrete distributions. Saying that the probability density is uniform from 18C 

to 26C means that there is a 100% chance that the temperature will fall 

somewhere in that 8C-wide region and a 50% chance that it will fall in any 

4C-wide region, and so on. 

• We write the probability density for a continuous random variable X at value x

as P(X = x) or just P(x); the intuitive definition of P(x) is the probability that X

falls within an arbitrarily small region beginning at x, divided by the width of 

the region:

Lang. of propositions in prob. assertions
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• In addition to distributions on single variables, we need notation for 

distributions on multiple variables. Commas are used for this. For example, 

P(Weather, Cavity) denotes the probabilities of all combinations of the values 

of Weather and Cavity. This is a 4×2 table of probabilities called the joint 

probability distribution of Weather and Cavity. 

• We can also mix variables with and without values; P(sunny, Cavity) would be 

a two-element vector giving the probabilities of a sunny day with a cavity and 

a sunny day with no cavity. 

Lang. of propositions in prob. assertions
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• The product rules for all possible values of Weather and Cavity can be written 

as a single equation: 

instead of as these 4 × 2 = 8 equations (using abbreviations W and C ):

Lang. of propositions in prob. assertions
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• As a degenerate case, P(sunny, cavity) has no variables and thus is a one-

element vector that is the probability of a sunny day with a cavity, which could 

also be written as P(sunny, cavity) or P(sunny ∧ cavity). 

Lang. of propositions in prob. assertions
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• A possible world is defined to be an assignment of values to all of the random 

variables under consideration. For example, if the random variables are Cavity, 

Toothache, and Weather, then there are 2 × 2 × 4 = 16 possible worlds. 

• A probability model is completely determined by the joint distribution for all 

of the random variables. For example, if the variables are Cavity, Toothache, 

and Weather, then the full joint distribution is given by P(Cavity, Toothache, 

Weather). This joint distribution can be represented as a 2 × 2 × 4 table with 

16 entries. 

Lang. of propositions in prob. assertions
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• We describe a simple method for probabilistic inference—that is, the 

computation of posterior probabilities for query propositions given observed 

evidence. 

• We begin with a simple example: a domain consisting of just the three Boolean 

variables Toothache, Cavity, and Catch. The full joint distribution is a 2 × 2 ×

2 table as shown in Figure 13.3.

Inference Using Full Joint Distributions
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• Notice that the probabilities in the joint distribution sum to 1, as required by 

the axioms of probability. Equation (13.2) gives us a direct way to calculate 

the probability: simply identify those possible worlds in which the proposition 

is true and add up their probabilities. For example, there are six possible 

worlds in which cavity ∨ toothache holds:

Inference Using Full Joint Distributions
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• One particularly common task is to extract the distribution over some subset 

of variables or a single variable. For example, adding the entries in the first 

row gives the unconditional or marginal probability of cavity:

• This process is called marginalization, or summing out—because we sum 

up the probabilities for each possible value of the other variables, thereby 

taking them out of the equation.

Inference Using Full Joint Distributions
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• In most cases, we are interested in computing conditional probabilities of 

some variables, given evidence about others. For example, we can compute 

the probability of a cavity, given evidence of a toothache, as follows:

Inference Using Full Joint Distributions
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• The two values sum to 1.0, as they should. Notice that in these two 

calculations the term 1/P(toothache) remains constant, no matter which value 

of Cavity we calculate. It can be viewed as a normalization constant for the 

distribution P(Cavity | toothache), ensuring that it adds up to 1. Throughout 

the chapters dealing with probability, we use α to denote such constants. With 

this notation, we can write the two preceding equations in one: 

Inference Using Full Joint Distributions
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• In other words, we can calculate P(Cavity | toothache) even if we don’t know 

the value of P(toothache)! 

• We temporarily forget about the factor 1/P(toothache) and add up the values 

for cavity and ¬cavity, getting 0.12 and 0.08. Those are the correct relative 

proportions, but they don’t sum to 1, so we normalize them by dividing each 

one by 0.12 + 0.08, getting the true probabilities of 0.6 and 0.4. 

• Normalization turns out to be a useful shortcut in many probability 

calculations, both to make the computation easier and to allow us to proceed 

when some probability assessment (such as P(toothache)) is not available.

Inference Using Full Joint Distributions
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• If the query involves a single variable, X (Cavity in the example). Let E be the 

list of evidence variables (just Toothache in the example), let e be the list of 

observed values for them, and let Y be the remaining unobserved variables 

(just Catch in the example). The query is P(X | e) and can be evaluated as

where the summation is over all possible y’s (i.e., all possible combinations of 

values of the unobserved variables Y). Notice that together the variables X, E, 

and Y constitute the complete set of variables for the domain, so P(X, e, y) is 

simply a subset of probabilities from the full joint distribution.

Inference Using Full Joint Distributions
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• Let us expand the full joint distribution in Figure 13.3 by adding a fourth 

variable, Weather. The full joint distribution then becomes P(Toothache, 

Catch, Cavity, Weather), which has 2 × 2 × 2 × 4 = 32 entries. It contains 

four “editions” of the table shown in Figure 13.3, one for each kind of weather. 

• How are P(toothache, catch, cavity, cloudy) and P(toothache, catch, cavity) 

related? We can use the product rule:

Independence
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• The property we used in Equation (13.10) is called independence (also 

marginal independence and absolute independence). In particular, the 

weather is independent of one’s dental problems. Independence between 

propositions a and b can be written as

• All these forms are equivalent. Independence between variables X and Y can 

be written as follows:

Independence
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• Independence assertions are usually based on knowledge of the domain. As 

the toothache– weather example illustrates, they can dramatically reduce the 

amount of information necessary to specify the full joint distribution. If the 

complete set of variables can be divided into independent subsets, then the 

full joint distribution can be factored into separate joint distributions on those 

subsets. 

• For example, the full joint distribution on the outcome of n independent coin 

flips, P(C1, . . . , Cn), has 2n entries, but it can be represented as the product of 

n single-variable distributions P(Ci). 

Independence
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• Product rule can actually be written in two forms:

• Equating the two right-hand sides and dividing by P(a), we get

• This equation is known as Bayes’ rule (also Bayes’ law or Bayes’ theorem). 

This simple equation underlies most modern AI systems for probabilistic 

inference.

Bayes’ Rule

51



Bayes’ Rule

52



• On the surface, Bayes’ rule does not seem very useful. It allows us to compute 

the single term P(b | a) in terms of three terms: P(a | b), P(b), and P(a). That 

seems like two steps backwards, but Bayes’ rule is useful in practice because 

there are many cases where we do have good probability estimates for these 

three numbers and need to compute the fourth. 

• Often, we perceive as evidence the effect of some unknown cause and we 

would like to determine that cause. In that case, Bayes’ rule becomes

Applying Bayes’ rule: The simple case
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• The conditional probability P(effect | cause) quantifies the relationship in the 

causal direction, whereas P(cause | effect) describes the diagnostic direction. 

• In a task such as medical diagnosis, we often have conditional probabilities on 

causal relationships (that is, the doctor knows P(symptoms | disease)) and 

want to derive a diagnosis, P(disease | symptoms). 

• For example, a doctor knows that the disease meningitis (腦膜炎) causes the 

patient to have a stiff (僵硬) neck, say, 70% of the time. The doctor also 

knows some unconditional facts: the prior probability that a patient has 

meningitis is 1/50,000, and the prior probability that any patient has a stiff 

neck is 1%. 

Applying Bayes’ rule: The simple case
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• Letting s be the proposition that the patient has a stiff neck and m be the 

proposition that the patient has meningitis, we have

• Notice that even though a stiff neck is quite strongly indicated by meningitis 

(with probability 0.7), the probability of meningitis in the patient remains 

small. This is because the prior probability of stiff necks is much higher than 

that of meningitis.

Applying Bayes’ rule: The simple case
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• One can avoid assessing the prior probability of the evidence (here, P(s)) by 

instead computing a posterior probability for each value of the query variable 

(here, m and ¬m) and then normalizing the results. The same process can be 

applied when using Bayes’ rule. We have

• Thus, to use this approach we need to estimate P(s | ¬m) instead of P(s). 

There is no free lunch—sometimes this is easier, sometimes it is harder. 

Applying Bayes’ rule: The simple case
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• One obvious question to ask about Bayes’ rule is why one might have 

available the conditional probability in one direction, but not the other. In the 

meningitis domain, perhaps the doctor knows that a stiff neck implies 

meningitis in 1 out of 5000 cases; that is, the doctor has quantitative 

information in the diagnostic direction from symptoms to causes. Such a 

doctor has no need to use Bayes’ rule. 

• Unfortunately, diagnostic knowledge is often more fragile (脆弱) than causal 

knowledge. If there is a sudden epidemic of meningitis, the unconditional 

probability of meningitis, P(m), will go up. 

Applying Bayes’ rule: The simple case
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• The doctor who derived the diagnostic probability P(m | s) directly from 

statistical observation of patients before the epidemic will have no idea how to 

update the value, but the doctor who computes P(m | s) from the other three 

values will see that P(m | s) should go up proportionately with P(m). Most 

important, the causal information P(s | m) is unaffected by the epidemic, 

because it simply reflects the way meningitis works. 

Applying Bayes’ rule: The simple case
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• What happens when we have two or more pieces of evidence? For example, 

what can a dentist conclude if her nasty steel probe catches in the aching tooth 

of a patient? If we know the full joint distribution (Figure 13.3), we can read 

off the answer:

Using Bayes’ rule: Combining evidence
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• We know, however, that such an approach does not scale up to larger numbers 

of variables. We can try using Bayes’ rule to reformulate the problem:

• We need to know the conditional probabilities of the conjunction 

toothache ∧ catch for each value of Cavity. 

• If there are n possible evidence variables (X rays, diet, oral hygiene, etc.), 

then there are 2n possible combinations of observed values for which we 

would need to know conditional probabilities. 

Using Bayes’ rule: Combining evidence
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• We need to find some additional assertions about the domain that will enable 

us to simplify the expressions. The notion of independence in Section 13.4 

provides a clue. It would be nice if Toothache and Catch were independent, 

but they are not: if the probe catches in the tooth, then it is likely that the tooth 

has a cavity and that the cavity causes a toothache. 

• These variables are independent, however, given the presence or the absence 

of a cavity. 

Using Bayes’ rule: Combining evidence
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• Each is directly caused by the cavity, but neither has a direct effect on the 

other: toothache depends on the state of the nerves in the tooth, whereas the 

probe’s accuracy depends on the dentist’s skill, to which the toothache is 

irrelevant. This property is written as 

• This equation expresses the conditional independence of toothache and 

catch given Cavity. We can plug it into Equation (13.16) to obtain the 

probability of a cavity:

Using Bayes’ rule: Combining evidence
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• The general definition of conditional independence of two variables X and Y, 

given a third variable Z, is 

• In the dentist domain, it seems reasonable to assert conditional independence 

of the variables Toothache and Catch, given Cavity:

Using Bayes’ rule: Combining evidence
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• Given the assertion in Equation (13.19), we can derive a decomposition: 

• Conditional independence assertions can allow probabilistic systems to scale 

up; moreover, they are much more commonly available than absolute 

independence assertions. 

Using Bayes’ rule: Combining evidence
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• The dentistry example illustrates a commonly occurring pattern in which a 

single cause directly influences a number of effects, all of which are 

conditionally independent, given the cause. The full joint distribution can be 

written as

Naïve Bayes Models
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• Such a probability distribution is called a naive Bayes model—“naive” 

because it is often used in cases where the “effect” variables are not strictly 

independent given the cause variable. (The naive Bayes model is sometimes 

called a Bayesian classifier.) 

• In practice, naive Bayes systems often work very well, even when the 

conditional independence assumption is not strictly true.

Naïve Bayes Models
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